Abstract

Sodium metal batteries have been emerging as promising candidates for post-Li battery systems owing to the natural abundance, low costs, and high energy density of Na metal. However, exploiting an Na metal anode is accompanied by uncontrolled Na electrodeposition, particularly concerning dendrite growth, hampering practical Na metal battery applications. Herein, we propose sodiophilic gel polymer electrolytes with a porosity-gradient Janus structure to alleviate Na dendrite growth. Tethering only 1.1 mol % sodiophilic poly(ethylene glycol) to poly(vinylidene fluoride-co-hexafluoropropylene) suppresses Na dendrites by regulating homogeneous Na+ distribution, which relies on molecular-level coordination between Na+ and the sodiophilic functional groups. By exploiting the porosity-gradient Janus structure, we have demonstrated that regular porosity and well-defined morphology of polymer electrolytes, particularly at the Na/electrolyte interface, significantly impact dendrite growth. This study provides new insights into the rational design of Na dendrite-suppressing polymer electrolytes, primarily focusing on the ion-regulating ability achieved by surface engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.