Abstract

AbstractLithium metal is an exciting anode candidate with extra high theoretical specific capacity for new high‐energy rechargeable batteries. However, uncontrolled Li deposition and an unsteady solid electrolyte interface seriously obstruct the commercial application of Li anodes in Li metal batteries. Herein, 3D carbon cloth (CC) supporting N‐doped carbon (CN) nanosheet arrays embedded with tiny Co nanoparticles (CC@CN‐Co) are employed as a lithiophilic framework to regulate homogenous Li nucleation/growth behavior in a working Li metal anode. The emergence of Li dendrites is supposed to be inhibited by the conductive 3D scaffold that reduces local current density. The uniform nucleation of Li can be guided by N‐containing functional groups as they have a strong interaction with Li atoms, and the tiny Co nanoparticles can provide active sites to guide Li deposition. As a result, the current CC@CN‐Co host exhibits Li dendrite–free features and stable cycling performance with a low overpotential (20 mV) throughout 800 h cycles. When paired with the typical LiFePO4 (LFP) cathode, the assembled CC@CN‐Co@Li//LFP@C full cell exhibits outstanding rate capability and improved cycling performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call