Abstract

Developing efficient and cost‐effective electrocatalysts as substitutes for noble metals remains a big challenge, which demands significant advancements in both material designing and mechanistic understanding. Herein, Co3O4/CeO2 heterojunction nanonetworks are successfully synthesized through metal organic framework precursor. Notably, Co3O4/CeO2 heterojunctions can effectively regulate electronic structure of Co3O4, thus inducing oxygen atom from Co3O4 lattice to participating in oxygen evolution reaction (OER) via lattice oxygen‐mediated mechanism, which reduces reaction overpotential. Additionally, the porous network structure can facilitate electrolyte transfer and provide more active sites for electrocatalytic reactions. Consequently, Co3O4/CeO2 heterojunction nanonetworks exhibit great electrocatalytic performance and high durability, requiring only an OER overpotential of 259 mV at current density of 100 mA cm−2 in 1 M KOH, markedly outperforming Co3O4 nanocatalysts (309 mV) and showing promising potential as substitutable non‐noble OER catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.