Abstract

Nano-scale compositional heterogeneity of crystalline phase in Ti-based amorphous alloy composites (AACs) has been successfully tuned by tuning cooling rate in solidification process. And the effect of compositional heterogeneity on the kinetics of the deformation-induced phase transformation was investigated by in-situ synchrotron-based high-energy X-ray diffraction (HE-XRD) and ex-situ transmission electron microscopy. In-situ HEXRD experiments provide obvious evidence that with the decrease of the cooling rate during solidification, the critical stress of the deformation-induced phase transformation becomes lower, and the phase transformation rate becomes higher. Further high angle annular dark field-scanning electron microscopy investigation shows that the occurrence of the nano-scale Zr-lean compositional heterogeneity, which can favor the nucleation of the martensite, is the reason for the variation of the phase transformation kinetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call