Abstract

Interfacial thermal conductance (ITC) between two contact surfaces is an important factor in accurately measuring energy transfer and heat dissipation at the interface; however, it is still not fully resolved how to more effectively modulate the ITC and unravel the related inner mechanisms. In this study, the contribution of commensurability and normal load to ITC at the atomic-scale silicon/silicon interface is disclosed. The results manifest that the ITC gradually reduces with the transition from commensurability to incommensurability. This is because the reduced force constant at the incommensurate interface decreases the transmittance of phonons, leading to the suppression of high-frequency phonon excitation and a red shift in the phonon spectrum, thereby weakening the ITC. We further discovered that increasing the normal loads can significantly enhance the ITC in both contact states, and the reason is that the interlayer distance decreases with increasing normal loads, which strengthens the interfacial potential and force constant, consequently resulting in greater heat transfer efficiency. This paper reveals that interfacial thermal transport can be regulated by applying normal loads and changing the interfacial contact states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.