Abstract

The conductivity and emission efficiency of metal-organic frameworks (MOFs) remain challenging factors that limit their electrogenerated chemiluminescence (ECL) sensing applications. Herein, we report a facile approach to address these challenges by integrating an electroactive linker (H2-TCPP) with an ECL active electrogenerated chemiluminescence linker (H4-TBAPy) to construct a highly photoelectrochemical active mixed-linker MOFs (ML-MOFs). ECL results revealed a remarkable 15.4-fold enhancement for the top-performing ML-MOFs (M6-MOFs), surpassing the single linker MOFs. In addition, M6-MOFs also exhibit a remarkable 73-fold enhancement in ECL efficiency compared to commercial Ru (bpy)32+. This improvement should be attributed to the synergistic effects resulting from the combination of two linkers. Furthermore, M6-MOFs are found to be served as a model ECLphore for sensitive and selective detection of α-glucosidase for the first time with good potential practicability in human serum samples. This work represents a promising direction to guide for designing good conductivity and high ECL efficiency MOFs in terms of linker functionalization and thus bandgap modulation for advancing their ECL sensing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call