Abstract

Since the development of light-responsive amino acids, the activity of numerous biomolecules has been photomodulated in biochemical, biophysical, and cellular assays. Biological problems of even greater complexity motivate the development of quantitative methods for controlling gene activity with high spatial and temporal resolution, using light as an external trigger. Photoresponsive DNA and RNA oligonucleotides would optimally serve this purpose, but have proven difficult to expand from proofs-of-concept to in vivo experiments. Until recently, the development of this technology was limited by the synthesis of oligonucleotides whose function could be significantly modulated with near-UV light. New synthetic protocols and strategies for both up- and down-regulating gene activity finally make it possible to address biological considerations. In the near future, we can expect photoresponsive DNA and RNA molecules that are relatively non-toxic, nuclease-resistant, and maintain their specificity and activity in vivo. Quantitative, laser-initiated methods for controlling DNA and RNA function will illuminate new areas in cell and developmental biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.