Abstract
Ultrathin MXene-based films exhibit superior conductivity and high capacitance, showing promise as electrodes for flexible supercapacitors. This work describes a simple method to enhance the performance of MXene-based supercapacitors by expanding and stabilizing the interlayer space between MXene flakes while controlling the functional groups to improve the conductivity. Ti3C2Tx MXene flakes are treated with bacterial cellulose (BC) and NaOH to form a composite MXene/BC (A-M/BC) electrode with a microporous interlayer and high surface area (62.47 m2 g-1). Annealing the films at low temperature partially carbonizes BC, increasing the overall electrical conductivity of the films. Improvement in conductivity is also attributed to the reduction of -F, -Cl, and -OH functional groups, leaving -Na and -O functional groups on the surface. As a result, the A-M/BC electrode demonstrates a capacitance of 594 F g-1 at a current density of 1 A g-1 in 3 M H2SO4, which represents a ∼2× increase over similarly processed films without BC (309 F g-1) or pure MXene (298 F g-1). The corresponding device has an energy density of 9.63 Wh kg-1 at a power density of 250 W kg-1. BC is inexpensive and enhances the overall performance of MXene-based film electrodes in electronic devices. This method underscores the importance of functional group regulation in enhancing MXene-based materials for energy storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.