Abstract

Microbial populations can maximize fitness in dynamic environments through bet hedging, a process wherein a subpopulation assumes a phenotype notoptimally adapted to the present environment but well adapted to an environment likely to be encountered. Here, we show that oxygen induces fluctuating expression of the trimethylamine oxide (TMAO) respiratory system of Escherichia coli, diversifying the cell population and enabling a bet-hedging strategy that permits growth following oxygen loss. This regulation by oxygen affects the variance in gene expression but leaves the mean unchanged. We show that the oxygen-sensitive transcription factor IscR is the key regulator of variability. Oxygen causes IscR to repress expression ofa TMAO-responsive signaling system, allowing stochastic effects to have a strong effect on the output of the system and resulting in heterogeneous expression of the TMAO reduction machinery. This work reveals a mechanism through which cells regulate molecular noise to enhance fitness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call