Abstract
Regulated gene expression within a complex chromosomal locus requires multiple nuclear processes. We have analyzed the transcriptional properties of the cloned chick beta-globin gene family when assembled into synthetic nuclei made by use of Xenopus egg extracts. Assembly in an erythroid protein environment correctly recapitulates tissue-specific chromatin structure and long-range promoter-enhancer interaction within the chromosomal locus, resulting in beta-globin gene activation. Nucleosome-repressed beta-globin templates can be transcriptionally activated by double-stranded DNA replication in the presence of staged erythroid proteins by remodeling of the chromatin structure within the promoter region and establishment of distal promoter-enhancer communication. The programmed transcriptional state of a gene, as encoded by its chromatin structure and long-range promoter-enhancer interactions, is stable to nuclear decondensation and DNA replication unless active remodeling occurs in the presence of specific DNA-binding proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.