Abstract

We have applied cell-attached capacitance measurements to investigate whether synaptic-like microvesicles (SLMVs) undergo regulated exocytosis in insulinoma and primary pancreatic beta-cells. SLMV and large dense-core vesicle (LDCV) exocytosis was increased 1.6- and 2.4-fold upon stimulation with 10 mmol/l glucose in INS-1 cells. Exocytosis of both types of vesicles was coupled to Ca(2+) entry through l-type channels. Thirty percent of SLMV exocytosis in INS-1 and rat beta-cells was associated with transient capacitance increases consistent with kiss-and-run. Elevation of intracellular cAMP (5 micromol/l forskolin) increased SLMV exocytosis 1.6-fold and lengthened the duration of kiss-and-run events in rat beta-cells. Experiments using isolated inside-out patches of INS-1 cells revealed that the readily releasable pool (RRP) of SLMVs preferentially undergoes kiss-and-run exocytosis (67%), is proportionally larger than the LDCV RRP, and is depleted more quickly upon Ca(2+) stimulation. We conclude that SLMVs undergo glucose-regulated exocytosis and are capable of high turnover. Following kiss-and-run exocytosis, the SLMV RRP may be reloaded with gamma-aminobutyric acid and undergo several cycles of exo- and endocytosis. Our observations support a role for beta-cell SLMVs in a synaptic-like function of rapid intra-islet signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.