Abstract

Organic small molecules doping in polymer carbon nitride (PCN) skeleton can dramatically improve photocatalytic performance owing to its effective regulation effect on molecular and electronic structure. Here, a new PCN-based photocatalyst is obtained via polymerization of urea with 1-benzyl-3-phenylthiourea (BPT). The doping effect of BPT in PCN skeleton directly adjusts the hybridization states and delocalization of molecular orbitals, so that the visible light harvest ability, adsorption capacity, charge separation efficiency and transfer kinetics are improved significantly. Consequently, the photocatalytic hydrogen evolution reaction (HER) rate reaches to 125.0 μmol h−1 over the optimal PCN-BPT15 photocatalyst, which is as 13.9 times as PCN (9.0 μmol h−1). Noteworthily, a high apparent quantum efficiency (AQE) of 24.2% is achieved at 420 nm for photocatalytic HER. This work enriches the functionalized investigations of PCN-like photocatalysts by insight into regulated effect of organic small molecules in the skeleton for photocatalytic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.