Abstract

Eukaryotic cells coordinately regulate histone and DNA synthesis. In mammalian cells, most of the regulation of histone synthesis occurs post-transcriptionally by regulating the concentrations of histone mRNA. As cells enter S phase, histone mRNA levels increase, and at the end of S phase they are rapidly degraded. Moreover, inhibition of DNA synthesis causes rapid degradation of histone mRNAs. Replication-dependent histone mRNAs are the only metazoan mRNAs that are not polyadenylated. Instead, they end with a conserved stem-loop structure, which is the only cis-acting element required for coupling regulation of histone mRNA half-life with DNA synthesis. Here we show that regulated degradation of histone mRNAs requires Upf1, a key regulator of the nonsense-mediated decay pathway, and ATR, a key regulator of the DNA damage checkpoint pathway activated during replication stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call