Abstract

ObjectiveAcyl-CoA synthetase short-chain family member 2 (ACSS2) activity provides a major source of acetyl-CoA to drive histone acetylation. This study aimed to unravel the ACSS2 expression during mouse spermatogenesis, where a dynamic and stage-specific genome-wide histone hyperacetylation occurs before histone eviction.Materials and MethodsIn this experimental study, ACSS2 expression levels during spermatogenesis were verified by Immunodetection. Testis paraffin-embedded sections were used for IHC staining with anti-H4 pan ac and anti-ACSS2. Co-detection of ACSS2 and H4K5ac was performed on testis tubular sections by immunofluorescence. Proteins extracts from fractionated male germ cells were subjected to western-blotting and immunoblot was probed with anti- ACSS2 and anti-actin.ResultsThe resulting data showed that the commitment of progenitor cells into meiotic divisions leads to a robust accumulation of ACSS2 in the cell nucleus, especially in pachytene spermatocytes (P). However, ACSS2 protein drastically declines during post-meiotic stages, when a genome-wide histone hyperacetylation is known to occur.ConclusionThe results of this study are in agreement with the idea that the major function of ACSS2 is to recycle acetate generated after histone deacetylation to regenerate acetyl-CoA which is required to maintain the steady state of histone acetylation. Thus, it is suggested that in spermatogenic cells, nuclear activity of ACSS2 maintains the acetate recycling until histone hyperacetylation, but disappears before the acetylation-dependent histone degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.