Abstract
Stimulation of growth factor signaling has been implicated in the development of invasive phenotypes and the activation of p21-activated kinase (Pak1) in human breast cancer cells (Adam, L., Vadlamudi, R., Kondapaka, S. B., Chernoff, J., Mendelsohn, J., and Kumar, R. (1998) J. Biol. Chem. 273, 28238-28246; Adam, L., Vadlamudi, R., Mandal, M., Chernoff, J., and Kumar, R. (2000) J. Biol. Chem. 275, 12041-12050). To study the role of Pak1 in the regulation of motility and growth of breast epithelial cells, we developed human epithelial MCF-7 clones that overexpressed the kinase-active T423E Pak1 mutant under an inducible tetracycline promoter or that stably expressed the kinase-active H83L,H86L Pak1 mutant, which is deficient in small GTPase binding sites. The expression of both T423E and H83L,H86L Pak1 mutants in breast epithelial cells was accompanied by increased cell motility without any apparent effect on the growth rate of cells. The T423E Pak1 mutant was primarily localized to filopodia, and the H83L,H86L Pak1 mutant was primarily localized to ruffles. Cells expressing T423E Pak1 exhibited a regulatable stimulation of mitogen-activated protein kinase and Jun N-terminal kinase activities. The expression of kinase-active Pak1 mutants significantly stimulated anchorage-independent growth of cells in soft agar in a preferential mitogen-activated protein kinase-sensitive manner. In addition, regulatable expression of kinase-active Pak1 resulted in an abnormal organization of mitotic spindles characterized by appearance of multiple spindle orientations. We also provide evidence to suggest a close correlation between the status of Pak1 kinase activity and base-line invasiveness of human breast cancer cells and breast tumor grades. This study is the first demonstration of Pak1 regulation of anchorage-independent growth, potential Pak1 regulation of invasiveness, and abnormal organization of mitotic spindles of human epithelial breast cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.