Abstract
The existence of slowly and regularly varying solutions in the sense of Karamata implying nonoscillation is proved for a class of second order nonlinear retarded functional differential equations of Thomas-Fermi type. A motivation for such study is the extensively developed theory offering a number of properties of regularly and slowly varying functions ([2]) - consequently of such solutions of differential equations. As an illustration, the precise asymptotic behaviour for $t\rightarrow \infty$ of the slowly varying solutions for a subclass of considered equations is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.