Abstract

We propose an optimization method coupling a learned denoiser with the untrained generative model, called deep image prior (DIP) in the framework of the Alternating Direction Method of Multipliers (ADMM) method. We also study different regularizers of DIP optimization, for inverse problems in imaging, focusing in particular on denoising and super-resolution. The goal is to make the best of the untrained DIP and of a generic regularizer learned in a supervised manner from a large collection of images. When placed in the ADMM framework, the denoiser is used as a proximal operator and can be learned independently of the considered inverse problem. We show the benefits of the proposed method, in comparison with other regularized DIP methods, for two linear inverse problems, i.e., denoising and super-resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.