Abstract

Training generative adversarial networks (GANs) using limited training data is challenging since the original discriminator is prone to overfitting. The recently proposed label augmentation technique complements categorical data augmentation approaches for discriminator, showing improved data efficiency in training GANs but lacks a theoretical basis. In this paper, we propose a novel regularization approach for the label-augmented discriminator to further improve the data efficiency of training GANs with a theoretical basis. Specifically, the proposed regularization adaptively constrains the predictions of the label-augmented discriminator on generated data to be close to the moving averages of its historical predictions on real data, and vice versa. We theoretically establish a connection between the objective function with the proposed regularization and a f-divergence that is more robust than the previous reversed Kullback-Leibler divergence. Experimental results on various datasets and diverse architectures show the significantly improved data efficiency of our proposed method compared to state-of-the-art data-efficient GAN training approaches for training GANs under limited training data regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.