Abstract
We present a new multiparameter resolvent trace expansion for elliptic operators, polyhomogeneous in both the resolvent and auxiliary variables. For elliptic operators on closed manifolds the expansion is a simple consequence of the parameter dependent pseudodifferential calculus. As an additional nontrivial toy example we treat here Sturm-Liouville operators with separated boundary conditions. As an application we give a new formula, in terms of regularized sums, for the zeta-determinant of an infinite direct sum of Sturm-Liouville operators. The Laplace-Beltrami operator on a surface of revolution decomposes into an infinite direct sum of Sturm-Louville operators, parametrized by the eigenvalues of the Laplacian on the cross-section. We apply the polyhomogeneous expansion to equate the zeta-determinant of the Laplace-Beltrami operator as a regularized sum of zeta-determinants of the Sturm-Liouville operators plus a locally computable term from the polyhomogeneous resolvent trace asymptotics. This approach provides a completely new method for summing up zeta-functions of operators and computing the meromorphic extension of that infinite sum to s=0. We expect out method to extend to a much larger class of operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.