Abstract
In this paper, we develop a functional analytical theory for establishing that mild solutions of first-order Cauchy problems involving homogeneous operators of order zero are strong solutions; in particular, the first-order time derivative satisfies a global regularity estimate depending only on the initial value and the positive time. We apply those results to the Cauchy problem associated with the total variational flow operator and the nonlocal fractional 1-Laplace operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.