Abstract

AbstractThis paper first derives the training objective function of faulty radial basis function (RBF) networks, in which open weight fault and multiplicative weight noise co-exist. A regularizer is then identified from the objective function. Finally, the corresponding learning algorithm is developed. Compared to the conventional approach, our approach has a better fault tolerant ability. We then develop a faulty mean prediction error (FMPE) formula to estimate the generalization ability of faulty RBF networks. The FMPE formula helps us to understand the generalization ability of faulty networks without using a test set or generating a number of potential faulty networks. We then demonstrate how to use our FMPE formula to optimize the RBF width for the co-existing fault situation.KeywordsRBF networksfault tolerance

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.