Abstract

In this paper, an efficient beam tracking algorithm for a regularized zero-forcing (RZF) approach in slowly fading multiple-input and single-output (MISO) broadcast channels is considered. By modifying an RZF equation, an RZF beam tracking algorithm is proposed using matrix perturbation theory. The proposed algorithm utilizes both beams from the previous time step and channel difference (between the previous and current time steps) to calculate the RZF beams. The tracking performance of the proposed algorithm is analyzed in terms of the mean square error (MSE) between a tracking approach and an exact recomputing approach, and in terms of the additional MSE caused by the beam tracking error at the receiver. Numerical results show that the proposed algorithm has almost the same performance as the exact recomputing approach in terms of the sum rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.