Abstract
Brain network parcellation based on resting-state functional MRI (rs-fMRI) is affected by noise, resulting in spurious small patches and decreased functional homogeneity within each network. Obtaining robust and homogeneous parcellation of neonate brain is more difficult, because neonate rs-fMRI is associated with relatively higher level of noise and no prior knowledge from a functional neonate atlas is available as spatial constraints. To meet these challenges, we developed a novel data-driven Regularized Normalized-cut (RNcut) method. RNcut is formulated by adding two regularization terms, a smoothing term using Markov random fields and a small-patch removal term, to conventional normalized-cut (Ncut) method. The RNcut and competing methods were tested with simulated datasets with known ground truth and then applied to both adult and neonate rs-fMRI datasets. Based on the parcellated networks generated by RNcut, intra-network connectivity was quantified. The test results from simulated datasets demonstrated that the RNcut method is more robust (p < 0.01) to noise and can delineate parcellated functional networks with significantly better (p < 0.01) spatial contiguity and significantly higher (p < 0.01) functional homogeneity than competing methods. Application of RNcut to neonate and adult rs-fMRI dataset revealed distinctive functional brain organization of neonate brains from that of adult brains. Collectively, we developed a novel data-driven RNcut method by integrating conventional Ncut with two regularization terms, generating robust and homogeneous functional parcellation without imposing spatial constraints. A broad range of brain network applications and analyses, especially neonate and infant brain parcellation with noisy and large sample of datasets, can potentially benefit from this RNcut method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.