Abstract
We investigate the stable numerical reconstruction of an unknown portion of the boundary of a two-dimensional domain occupied by an isotropic linear elastic material from a prescribed boundary condition on this part of the boundary and additional displacement and traction measurements (i.e. Cauchy data) on the remaining known portion of the boundary. This inverse geometric problem is approached by combining the method of fundamental solutions (MFS) and the Tikhonov regularization method, whilst the optimal value of the regularization parameter is chosen according to the discrepancy principle. Various geometries are considered, i.e. convex and non-convex domains with a smooth or piecewise smooth boundary, in order to show the numerical stability, convergence, consistency and computational efficiency of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.