Abstract
We consider a regularized Maximum Likelihood Estimation (MLE) framework to produce images in the context of radio interferometric measurements. Specifically, we consider the class of compound Gaussian distributions to model the additive noise in the presence of radiofrequency interferences. In most cases, direct maximization of the likelihood is not tractable. To overcome this issue, we propose a generic expectation–maximization (EM) algorithm in the presence of a compound Gaussian noise. In addition, we leverage an approximation of the forward radio interferometric operator to derive an original latent data space that allows the use of the FFT in the maximization step, leading to an accelerated extension of the proposed imaging algorithm. The proposed approaches are evaluated on simulated and real data and show a significant improvement in the robustness to the presence of radiofrequency interferences (RFI) in the measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.