Abstract
In this paper, we propose a regularized local metric learning (RLML) method for person re-identification. Unlike existing metric learning based person re-identification methods which learn a single distance metric to measure the similarity of each pair of human body images, our method combines global and local metrics to represent the within-class and between-class variances. By doing so, we utilize the local distribution of the training data to avoid the overfitting problem. In addition, to address the lacking of training samples in most person re-identification systems, our method also regulates the covariance matrices in a parametric manner, so that discriminative information can be better exploited. Experimental results on four widely used datasets demonstrate the advantage of our proposed RLML over both existing metric learning and state-of-the-art person re-identification methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.