Abstract

Reconstruction of the neuronal current inside the human brain from non-invasive measurements of the magnetic flux density via magnetoencephalography (MEG) or of electric potential differences via electroencephalography (EEG) is an invaluable tool for neuroscientific research, as it provides measures of activity in the brain. However, it is also a severely ill-posed inverse problem. Assuming spherical geometries, we consider the spherical multiple-shell model for the inverse MEG and EEG problem and apply the regularized functional matching pursuit algorithm (RFMP) for its solution. We present a new convergence proof for the RFMP for operators between two infinite-dimensional Hilbert spaces. Moreover, we utilize the complementarity of EEG and MEG data to combine inversions of simultaneous electric and magnetic measurements. Finally, we test the algorithm numerically on synthetic data using several Sobolev norms as penalty term and apply it to real data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.