Abstract

Regularized quantum information metrics are calculated for the scattering process e−e+→γ,Z→μ−μ+ that has a witness photon entangled with the initial electron-positron state. Unitarity implies the correct regularization of divergences that appear in both the final density matrix and von Neumann entanglement entropies. The entropies are found to quantify uncertainty or randomness. The variation of information, entanglement entropy, and correlation between the muon’s and witness photon’s helicities are found to convey equivalent information. The magnitude of the muon’s expected helicity rises (falls) as the helicity entropy falls (rises). Area, or the scattering cross section, is a source of entropy for the muon’s helicity entropy and momentum entropy. The muon’s differential angular entropy distribution is similar to the differential angular cross section distribution, capturing the forward-backward asymmetry at high center-of-mass energies. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.