Abstract

The purpose of this work is to develop and study a decentralized strategy for Pareto optimization of an aggregate cost consisting of regularized risks. Each risk is modeled as the expectation of some loss function with unknown probability distribution while the regularizers are assumed deterministic, but are not required to be differentiable or even continuous. The individual, regularized, cost functions are distributed across a strongly-connected network of agents and the Pareto optimal solution is sought by appealing to a multi-agent diffusion strategy. To this end, the regularizers are smoothed by means of infimal convolution and it is shown that the Pareto solution of the approximate, smooth problem can be made arbitrarily close to the solution of the original, non-smooth problem. Performance bounds are established under conditions that are weaker than assumed before in the literature, and hence applicable to a broader class of adaptation and learning problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.