Abstract
In general, an image attribute is a human-nameable visual property that has a semantic connotation. Appropriate modeling of the intrinsic contextual correlations among attributes plays a fundamental role in attribute detection. In this paper, we consider image attribute detection from the perspective of regularized deep learning. In particular, we propose a regularized deep belief network (rDBN) to perform the image attribute detection task, which is composed of two parts: 1) a detection DBN (dDBN) that models the joint distribution of images and their corresponding attributes, which acts as an attribute detector and 2) a contextual restricted Boltzmann machine that explicitly models the correlations among attributes acting as a regularizer that restraints the output detection result given by the dDBN to meet the contextual prior of attributes. Furthermore, we propose an efficient fine-tuning scheme that can further optimize the performance of the dDBN by backpropagation. Experimental results show that the proposed rDBN obtains improvements over the state-of-the-art methods for attribute detection on the benchmark data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.