Abstract

ABSTRACTThe common principal components (CPC) model provides a way to model the population covariance matrices of several groups by assuming a common eigenvector structure. When appropriate, this model can provide covariance matrix estimators of which the elements have smaller standard errors than when using either the pooled covariance matrix or the per group unbiased sample covariance matrix estimators. In this article, a regularized CPC estimator under the assumption of a common (or partially common) eigenvector structure in the populations is proposed. After estimation of the common eigenvectors using the Flury–Gautschi (or other) algorithm, the off-diagonal elements of the nearly diagonalized covariance matrices are shrunk towards zero and multiplied with the orthogonal common eigenvector matrix to obtain the regularized CPC covariance matrix estimates. The optimal shrinkage intensity per group can be estimated using cross-validation. The efficiency of these estimators compared to the pooled and unbiased estimators is investigated in a Monte Carlo simulation study, and the regularized CPC estimator is applied to a real dataset to demonstrate the utility of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.