Abstract
We present a new class of well-conditioned integral equations for the solution of two and three dimensional scattering problems by homogeneous penetrable scatterers. Our novel boundary integral equations result from using regularizing operators which are suitable approximations of the admittance operators that map the transmission boundary conditions to the exterior and, respectively, interior Cauchy data on the interface between the media. We refer to these regularized boundary integral equations as generalized combined source integral equations (GCSIE). The admittance operators can be expressed in terms of Dirichlet-to-Neumann operators and their inverses. We construct our regularizing operators in terms of simple boundary layer operators with complex wavenumbers. The choice of complex wavenumbers in the definition of the regularizing operators ensures the unique solvability of the GCSIE. The GCSIE are shown to be integral equations of the second kind for regular enough interfaces of material discontinu...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.