Abstract

High-dimensional data with censored outcomes of interest are prevalent in medical research. To analyze such data, the regularized Buckley-James estimator has been successfully applied to build accurate predictive models and conduct variable selection. In this paper, we consider the problem of parameter estimation and variable selection for the semiparametric accelerated failure time model for high-dimensional block-missing multimodal neuroimaging data with censored outcomes. We propose a penalized Buckley-James method that can simultaneously handle block-wise missing covariates and censored outcomes. This method can also perform variable selection. The proposed method is evaluated by simulations and applied to a multimodal neuroimaging dataset and obtains meaningful results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.