Abstract

Unmanned aerial vehicle (UAV) has become an important radar target recently because of its wide applications and potential security threats. Traditionally, visual features such as spectrogram were often extracted for human operators to identify the micro-Doppler signature (mDS) of UAVs, i.e. sinusoidal modulation. In this paper, the authors aim to design a system for machine automatic classification of UAVs from other targets, particularly from birds as both UAVs and birds are small and slow-moving radar targets. Most existing mDS representations such as spectrogram, cepstrogram and cadence velocity diagram discard the phase spectrum, and only make use of the magnitude spectrum. What’s more, people often take the logarithm of the spectrum to enlarge the weak mDS but without sufficient care, as noise may be enlarged at the same time. The authors thus propose a regularized 2-D complex-log-Fourier transform to address these problems. Furthermore, the authors propose an object-oriented dimension-reduction technique: subspace reliability analysis, which directly removes the unreliable feature dimensions of two class-conditional covariance matrices in two separate subspaces. On the benchmark dataset, the proposed approach demonstrates better performance than the state-of-the-art approaches. More specifically, the proposed approach significantly reduces the equal error rate of the second best approach, cadence velocity diagram, from 6.68% to 3.27%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.