Abstract

We introduce a learning algorithm for regression generated by a minimum error entropy (MEE) principle and regularization schemes in reproducing kernel Hilbert spaces. This empirical MEE algorithm is highly related to a scaling parameter arising from Parzen windowing. The purpose of this paper is to carry out consistency analysis when the scaling parameter is large. Explicit learning rates are provided. Novel approaches are proposed to overcome the difficulties in bounding the output function uniformly and in the special MEE feature that the regression function may not be a minimizer of the error entropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.