Abstract

Given a set of dictionary filters, the most widely used formulation of the convolutional sparse coding (CSC) problem is convolutional basis pursuit denoising (CBPDN), in which an image is represented as a sum over a set of convolutions of coefficient maps. When the input image is noisy, CBPDN’s regularization parameter greatly influences the quality of the reconstructed image. Results for an automatic and sensible selection of this parameter are very limited for the CSC / CBPDN case.In this paper we propose a regularization parameter-free method to solve the CSC problem via its projection onto the l 1 -Ball formulation coupled with a warm-start like strategy, which, driven by the Morozov’s discrepancy principle, adaptively increases/decreases its constrain at each major iteration. While the time performance of our proposed method is slower than that measured when solving CSC for a fixed regularization parameter, our computational results also show that our method’s reconstruction quality is, in average, very close (within 0.16 SNR, 0.16 PSNR, 0.003 SSIM) to that obtained when the regularization parameter for CBPDN is selected to produce the best (SNR) quality result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.