Abstract
Regularization parameter selection for image denoising has always been a hot issue. In this paper, an adaptive regularization parameter selection method is exploited for the Gaussian Mixture Model (GMM) based image restoration by combining the gradient matching and the local entropy of the image, which varies with different regions of the image and has a good robustness to noise. Experiment results demonstrate that our proposed adaptive regularization parameter for GMM based image restoration method performs comparatively well, both in visual effects and quantitative evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.