Abstract
Several interesting astrophysical phenomena are symmetric with respect to the rotation axis, like the head-on collision of compact bodies, the collapse and/or accretion of fields with a large variety of geometries, or some forms of gravitational waves. Most current numerical relativity codes, however, cannot take advantage of these symmetries due to the fact that singularities in the adapted coordinates, either at the origin or at the axis of symmetry, rapidly cause the simulation to crash. Because of this regularity problem it has become common practice to use full-blown Cartesian three-dimensional codes to simulate axi-symmetric systems. In this work we follow a recent idea of Rinne and Stewart and present a simple procedure to regularize the equations both in spherical and axi-symmetric spaces. We explicitly show the regularity of the evolution equations, describe the corresponding numerical code, and present several examples clearly showing the regularity of our evolutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.