Abstract
We study a porous medium with saturated, unsaturated, and dry regions, described by Richards' equation for the saturation s and the pressure p. Due to a degenerate permeability coefficient k ( x , s ) and a degenerate capillary pressure function p c ( x , s ) , the equations may be of elliptic, parabolic, or of ODE-type. We construct a parabolic regularization of the equations and find conditions that guarantee the convergence of the parabolic solutions to a solution of the degenerate system. An example shows that the convergence fails in general. Our approach provides an existence result for the outflow problem in the case of x-dependent coefficients and a method for a numerical approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.