Abstract

In this paper, we consider the regularization problem for the linear time-varying discrete-time periodic descriptor systems by derivative and proportional state feedback controls. Sufficient conditions are given under which derivative and proportional state feedback controls can be constructed so that the periodic closed-loop systems are regular and of index at most one. The construction procedures used to establish the theory are based on orthogonal and elementary matrix transformations and can, therefore, be developed to a numerically efficient algorithm. The problem of finite pole assignment of periodic descriptor systems is also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.