Abstract

A novel method for regularization of environment-induced relaxation transitions in nanoscopic systems is proposed. The method, being compatible with the chaotic, stochastic, and transient time scales, is physically consistent and mathematically strict. It allows one to correctly reduce the evolution of a system to a master equation for the balance of populations of its states with the probabilities of transitions between states well satisfying both the temperature-independent activationless limit and the Arrhenius exponentially temperature-dependent activation-like limit. The results obtained are applied to the description of the kinetics of temperature-independent desensitization and degradation observed in receptor and circadian protein macromolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.