Abstract

We studied the approximate split equality problem (ASEP) in the framework of infinite-dimensional Hilbert spaces. Let , , and   be infinite-dimensional real Hilbert spaces, let and   be two nonempty closed convex sets, and let and   be two bounded linear operators. The ASEP in infinite-dimensional Hilbert spaces is to minimize the function over and . Recently, Moudafi and Byrne had proposed several algorithms for solving the split equality problem and proved their convergence. Note that their algorithms have only weak convergence in infinite-dimensional Hilbert spaces. In this paper, we used the regularization method to establish a single-step iterative for solving the ASEP in infinite-dimensional Hilbert spaces and showed that the sequence generated by such algorithm strongly converges to the minimum-norm solution of the ASEP. Note that, by taking in the ASEP, we recover the approximate split feasibility problem (ASFP).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.