Abstract
Belief rule-based inference system introduces a belief distribution structure into the conventional rule-based system, which can effectively synthesize incomplete and fuzzy information. In order to optimize reasoning efficiency and reduce redundant rules, this paper proposes a rule reduction method based on regularization. This method controls the distribution of rules by setting corresponding regularization penalties in different learning steps and reduces redundant rules. This paper first proposes the use of the Gaussian membership function to optimize the structure and activation process of the belief rule base, and the corresponding regularization penalty construction method. Then, a step-by-step training method is used to set a different objective function for each step to control the distribution of belief rules, and a reduction threshold is set according to the distribution information of the belief rule base to perform rule reduction. Two experiments will be conducted based on the synthetic classification data set and the benchmark classification data set to verify the performance of the reduced belief rule base.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.