Abstract

This paper is concerned with the solution of large-scale linear discrete ill-posed problems with error-contaminated data. Tikhonov regularization is a popular approach to determine meaningful approximate solutions of such problems. The choice of regularization matrix in Tikhonov regularization may significantly affect the quality of the computed approximate solution. This matrix should be chosen to promote the recovery of known important features of the desired solution, such as smoothness and monotonicity. We describe a novel approach to determine regularization matrices with desired properties by solving a matrix nearness problem. The constructed regularization matrix is the closest matrix in the Frobenius norm with a prescribed null space to a given matrix. Numerical examples illustrate the performance of the regularization matrices so obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call