Abstract
Traditional space-invariant regularization methods in tomographic image reconstruction using penalized-likelihood estimators produce images with nonuniform spatial resolution properties. The local point spread functions that quantify the smoothing properties of such estimators are space-variant, asymmetric, and object-dependent even for space-invariant imaging systems. We propose a new quadratic regularization scheme for tomographic imaging systems that yields increased spatial uniformity and is motivated by the least-squares fitting of a parameterized local impulse response to a desired global response. We have developed computationally efficient methods for PET systems with shift-invariant geometric responses. We demonstrate the increased spatial uniformity of this new method versus conventional quadratic regularization schemes in simulated PET thorax scans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.