Abstract

The inverse and ill-posed problem of determining a solute concentration for the two-dimensional nonhomogeneous fractional diffusion equation is investigated. This model is much worse than its homogeneous counterpart as the source term appears. We propose a modified kernel regularization technique for the stable numerical reconstruction of the solution. The convergence estimates under both a priori and a posteriori parameter choice rules are proven.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.