Abstract
The total least squares (TLS) method is a successful method for noise reduction in linear least squares problems in a number of applications. The TLS method is suited to problems in which both the coefficient matrix and the right-hand side are not precisely known. This paper focuses on the use of TLS for solving problems with very ill-conditioned coefficient matrices whose singular values decay gradually (so-called discrete ill-posed problems), where some regularization is necessary to stabilize the computed solution. We filter the solution by truncating the small singular values of the TLS matrix. We express our results in terms of the singular value decomposition (SVD) of the coefficient matrix rather than the augmented matrix. This leads to insight into the filtering properties of the truncated TLS method as compared to regularized least squares solutions. In addition, we propose and test an iterative algorithm based on Lanczos bidiagonalization for computing truncated TLS solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.