Abstract

This paper presents an analysis of some regularization aspects in continuous-time model identification. The study particulary focuses on linear filter methods and shows that filtering the data before estimating their derivatives corresponds to a regularized signal derivative estimation by minimizing a compound criterion whose expression is given explicitly. A new structure based on a null phase filter corresponding to a true regularization filter is proposed and allows to discuss the filter phase effects on parameter estimation by comparing its performances with those of the Poisson filter-based methods. Based on this analysis, a formulation of continuous-time model identification as a joint system input–output signal and model parameter estimation is suggested. In this framework, two linear filter methods are interpreted and a compound criterion is proposed in which the regularization is ensured by a model fitting measure, resulting in a new regularization filter structure for signal estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.