Abstract

In this paper, we consider a class of matrix functions that contains regularization matrices of Mirzoev and Shkalikov for differential operators with distribution coefficients of order n≥2. We show that every matrix function of this class is associated with some differential expression. Moreover, we construct the family of associated matrices for a fixed differential expression. Furthermore, our regularization results are applied to inverse spectral theory. We study a new type of inverse spectral problems, which consist of the recovery of distribution coefficients from the spectral data independently of the associated matrix. The uniqueness theorems are proved for the inverse problems by the Weyl–Yurko matrix and by the discrete spectral data. As examples, we consider the cases n=2 and n=4 in more detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.