Abstract
It is known that Hermite processes have a finite-time interval representation. For fractional Brownian motion, the representation has been well known and plays a fundamental role in developing stochastic calculus for the process. For the Rosenblatt process, the finite-time interval representation was originally established by using cumulants. The representation was extended to general Hermite processes through the convergence of suitable partial sum processes. We provide here an alternative and different proof for the finite-time interval representation of Hermite processes. The approach is based on regularization of Hermite processes and the fractional Gaussian noises underlying them, and does not use cumulants nor convergence of partial sums.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.